The I'TOS Events API

Integrated Test & Operations System
5 October 2006

Copyright 1999-2006, United States Government as represented by the
Administrator of the National Aeronautics and Space Administration.
No copyright is claimed in the United States under Title 17,

U.S. Code.

This software and documentation are controlled exports and may only be
released to U.S. Citizens and appropriate Permanent Residents in the
United States. If you have any questions with respect to this
constraint contact the GSFC center export administrator,
<Thomas.R.Weisz@nasa.gov>.

This product contains software from the Integrated Test and Operations
System (ITOS), a satellite ground data system developed at the Goddard
Space Flight Center in Greenbelt MD. See <http://itos.gsfc.nasa.gov/>
or e-mail <itos@itos.gsfc.nasa.gov> for additional information.

You may use this software for any purpose provided you agree to the

following terms and conditions:

1. Redistributions of source code must retain the above copyright
notice and this list of conditions.

2. Redistributions in binary form must reproduce the above copyright
notice and this list of conditions in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgement:

This product contains software from the Integrated Test and Operations

System (ITOS), a satellite ground data system developed at the Goddard

Space Flight Center in Greenbelt MD.

This software is provided ‘‘as is’’ without any warranty of any kind,
either express, implied, or statutory, including, but not limited to,
any warranty that the software will conform to specification, any
implied warranties of merchantability, fitness for a particular
purpose, and freedom from infringement and any warranty that the
documentation will conform to their program or will be error free.

In no event shall NASA be liable for any damages, including, but not
limited to, direct, indirect, special or consequential damages,
arising out of, resulting from, or in any way connected with this
software, whether or not based upon warranty, contract, tort, or
otherwise, whether or not injury was sustained by persons or property
or otherwise, and whether or not loss was sustained from or arose out
of the results of, or use of, their software or services provided
hereunder.

Introduction 1

Introduction

ITOS includes an events subsystem which is responsible for collecting event messages
from all processes in ITOS, logging them, displaying them, and distributing them. Appli-
cations within ITOS employ a simple API to send messages to the events subsystem, and
this document describes that API and its operation.

The API is contained in the main ITOS library, ‘libtcw.so’. (A library containing only
the Event API, called ‘1ibitosevt.so’, also is available .)

May 1 1997

Chapter 1: Opening the Event Queue 2

1 Opening the Event Queue

To open a connection the the ITOS events subsystem, programs call the function open_
event (). This function should be called before sending messages to the events subsystem.

This function opens a FIFO (also known as a named pipe) given by the environ-
ment variable ITOS_EVTFIFO. If ITOS_EVTFIFQ is not set, the function tries to open
‘./fifos/event_fifo’. Upon opening the FIFO, it closes standard error, duplicates the
FIFO file descriptor making the FIFO standard error, and closes the original FIFO file
descriptor.

The open_event () function returns a 0 upon successful completion. On errors, it returns
-1 and sets the global char *liberrmsg to a string indicating the error that occurred.

Note that if open_event () fails, applications can still call EvtMsg(), but the messages
will go to the standard error output.

May 1 1997

Chapter 2: Sending Event Messages 3

2 Sending Event Messages

To send event messages, ITOS programs call the function EvtMsg(), which has the
following signature:

void EvtMsg(enum event_types event_type, char *format, ...)

and is used like the standard C function printf (). The format is a printf ()-style
format, with the extensions available to the ITOS function Snprintf (). The event_type is
an enumerated constant giving the type of event being generated. The ITOS event windows
allow user to filter messages based on these event types.

Details on the format extensions and event types are provided in the following sections.

2.1 How to use EvtMsg() and EvtMsgPurge()

The EvtMsg() function queues text within the calling application for output to the ITOS
event FIFO. Text is actually written to the event FIFO when a newline character is queued,
or when the event_type changes. In the latter case, the string ‘[\n??]’ is appended at the
end of the event message.

Some examples will help explain this behavior. The statements
EvtMsg(CMD_MSG,"This is a CMD_MSG event\n");
and

EvtMsg(CMD_MSG,"This is a ");
EvtMsg(CMD_MSG, "CMD_MSG event\n") ;

produce identical event messages. The statement
EvtMsg (IN_LIMITS, "One\nTwo\n") ;
produces two IN_.LIMITS event messages. The statements

EvtMsg(RED_VIUL,"ThiS is a ");
EvtMsg(YEL_VIOL,"YELLOW violation\n");

produces two event messages, the RED_VIOL message ‘This is a [\n??]’ and the
YEL_VIOL message ‘YELLOW violation’. Finally,

EvtMsg(TM_MSG,"%d + %d = 0x%08x\n", 15, 1, 16);
produces the TM_MSG message ‘15 + 1 = 0x00000010°.

An additional function, EvtMsgPurge (), clears any event message text queued in the
local application. This might be used in cases where it is convenient to create the beginning
of an error message just in case an error occurs. EvtMsgPurge() provides a way to discard
that message if no error actually occurs.

2.2 What EvtMsg() writes

When EvtMsg() writes a message, it writes a two-digit ASCII integer corresponding to
the event_type followed immediately, without space, by exactly what printf () (or, really,
Snprintf ()) would write.

From the examples in the previous section, then, the statement

May 1 1997

Chapter 2: Sending Event Messages 4

EvtMsg(CMD_MSG,"This is a CMD_MSG event\n");
writes
11This is a CMD_MSG event\n

The ‘11’ at the head of the output string is the event code. The numbers corresponding
to the enum event_types constants can be found in Section 2.4 [Event Types|, page 4.

2.3 Format Extensions

The following format extensions are available to users of EvtMsg():

%m is replaced with the error message corresponding to the current value of the
global error code errno, as it would be returned from the function strerror().
There must be no argument in the argument list corresponding to this conver-
sion.

%b is used to print integer or unsigned values in binary representation.

2.4 Event Types

The event_type argument to EvtMsg() must be an enumerated constant from the fol-
lowing list. The interpretation of each event type is left to the programmer.

enum event_type code meaning

NULL_EVENT 00 Unknown event type; can’t be filtered.
RED_VIOL 01 A red limits violation occurred.
YEL _VIOL 02 A Yellow limits violation occurred.
DEL _VIOL 03 A Delta limits violation occurred.
IN_LIMITS 04 A value went back in limits.
TM_MSG 05 Telemetry informational message.
TM_WARN 06 Telemetry warning message.
TM_ERROR o7 General telemetry error message.
CMD_EVENT 08 Command event.

CMD_VERIFY 09 Command verify /no-verify message.
CFG_ERROR 10 Configuration error message.
CMD_MSG 11 Command informational message.
CMD_WARN 12 Command warning message.
CMD_ERROR 13 General command error message.
CMD_TF 14 Command transfer frame echoed in hex.
OPER_ERROR 15 STOL Operator error.
STOL_ECHO 16 STOL echo of directives.
STOLMSG 17 STOL MSG directive message.
STOL_WARN 18 STOL warning message.
STOL_ERROR 19 STOL error message.

DSP_MSG 20 Display informational message.
DSP_WARN 21 Display warning message.
DSP_ERROR 22 Display error message.

STOL PRE 23 STOL directive preview message.

May 1 1997

Chapter 2: Sending Event Messages

CMD_DECODE
unused
SYS_ERROR
TCW_FAULT
SC_EVENT
CFG_ALERT
DEBUG_EVT
SDP_MSG
SDP_WARN
SDP_ERROR
CTLR_MSG
CTLR_-WARN
CTLR_ERROR
CFDP_MSG
CFDP_WARN
FDP_ERROR

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Command decoded back from the spacecraft.
unused.

System call failure message — call a programmer!.
Serious error message — call a programmer!.
Spacecraft event message.

Configuration monitor alert message.

A debugging message.

Science Data Processing message.

Science Data Processing warning.

Science Data Processing error.

Controller message.

Controller warning.

Controller error.

CFDP Driver message.

CFDP Driver warning.

CFDP Driver error.

May 1 1997

Index

E

enum event_types..............iiiiiia... 3,4
event type ... 3,4
EvtMsg() ..ooviiiii 3,4
EvtMsgPurge() 3

FIFO ... e 2
format........cooi 3,4
format extensions 4

L

1ibtCW.S0. ot i it e 1

N

named Pipel
newline character

Snprintf() ...
standard error,

May 1 1997

Table of Contents

Introductiont neennnnnn
1 Opening the Event Queue..................

2 Sending Event Messages....................

2.1 How to use EvtMsg() and EvtMsgPurge().................
2.2 What EvtMsg() writes...............ooiiiiiiii...
2.3 Format Extensions
24 Event Types.......ooioiiii e

IndexX .o i ittt it ittt i e et e i,

May 1 1997

